题目内容
【题目】如图,在⊙O中,点C在优弧上,将沿BC折叠后刚好经过AB的中点D,连接AC,CD.则下列结论中错误的是( )
①AC=CD;②AD=BD;③+=;④CD平分∠ACB
A.1B.2C.3D.4
【答案】A
【解析】
根据折叠的性质可得AD=CD;根据线段中点的定义可得AD=BD;根据垂径定理可作判断③;延长OD交⊙O于E,连接CE,根据垂径定理可作判断④.
过D作DD'⊥BC,交⊙O于D',连接CD'、BD',
由折叠得:CD=CD',∠ABC=∠CBD',
∴AC=CD'=CD,
故①正确;
∵点D是AB的中点,
∴AD=BD,
∵AC=CD',故②正确;
∴,
由折叠得:,
∴;
故③正确;
延长OD交⊙O于E,连接CE,
∵OD⊥AB,
∴∠ACE=∠BCE,
∴CD不平分∠ACB,
故④错误;
故选:A.
练习册系列答案
相关题目