题目内容

(2012•朝阳)如图,四边形ABCD是正方形,点E是BC边上一动点(不与B、C重合).连接AE,过点E作EF⊥AE,交DC于点F.
(1)求证:△ABE∽△ECF;
(2)连接AF,试探究当点E在BC什么位置时,∠BAE=∠EAF,请证明你的结论.
分析:(1)有正方形的性质和已知条件证明∠BAE=∠FEC即可证明:△ABE∽△ECF;
(2)连接AF,延长AE于DC的延长线相交于点H,当点E在BC中点位置时,通过证明三角形全等和等腰三角形的性质以及平行线的性质即可证明∠BAE=∠EAF.
解答:(1)证明:∵四边形ABCD是正方形,
∴∠B=∠C=90°,
∴∠BAE+∠BEA=90°,
∵EF⊥AE,
∴∠AEF=90°,
∴∠BEA+∠FEC=90°,
∴∠BAE=∠FEC,
∴△ABE∽△ECF;
(2)E是中点时,∠BAE=∠EAF,
理由如下:
连接AF,延长AE于DC的延长线相交于点H,
∵E为BC中点,
∴BE=CE,
∵AB∥DH,
∴∠B=∠ECH,
∵∠AEB=∠CEH,
∴△ABE≌△HCE,
∴AE=EH,
∵EF⊥AH,
∴△AFH是等腰三角形,
∴∠EAF=∠H,
∵AB∥DH,
∴∠H=∠BAE,
∴∠BAE=∠EAF,
∴当点E在BC中点位置时,∠BAE=∠EAF.
点评:本题考查了正方形的性质、相似三角形的判断和性质以及等腰三角形的判断和性质的综合运用,解答本题的关键是熟练掌握正方形的性质和相似三角形的各种判断方法,此题难度不大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网