题目内容

(2012•朝阳)如图已知P为⊙O外一点,PA为⊙O的切线,B为⊙O上一点,且PA=PB,C为优弧
AB
上任意一点(不与A、B重合),连接OP、AB,AB与OP相交于点D,连接AC、BC.
(1)求证:PB为⊙O的切线;
(2)若tan∠BCA=
2
3
,⊙O的半径为
13
,求弦AB的长.
分析:(1)连接OA,OB,根据AP为圆O的切线,利用切线的性质得到∠OAP为直角,由半径OA=OB,已知AP=BP,以及公共边OP,利用SSS得出△OAP≌△OBP,利用全等三角形的对应角相等得到∠OBP为直角,即BP垂直于OB,可得出BP为圆O的切线;
(2)延长BO与圆交于点E,连接AE,利用同弧所对的圆周角相等得到∠AEB=∠ACB,可得出tan∠AEB的值,由BE为圆O的直径,利用直径所对的圆周角为直角,得到∠BAE为直角,在直角三角形AEB中,设AB=2x,得到AE=3x,再由直径BE的长,利用勾股定理得到关于x的方程,求出方程的解得到x的值,即可求出弦AB的长.
解答:(1)证明:连接OA,OB,如图所示:

∵AP为圆O的切线,
∴∠OAP=90°,
在△OAP和△OBP中,
AP=BP(已知)
OA=OB(半径相等)
OP=OP(公共边)

∴△OAP≌△OBP(SSS),
∴∠OAP=∠OBP=90°,
则BP为圆O的切线;
(2)解:延长线段BO,与圆O交于E点,连接AE,
∵BE为圆O的直径,∴∠BAE=90°,
∵∠AEB和∠ACB都对
AB

∴∠AEB=∠ACB,
∴tan∠AEB=tan∠ACB=
2
3

设AB=2x,则AE=3x,
在Rt△AEB中,BE=2
13

根据勾股定理得:(2x)2+(3x)2=(2
13
2
解得:x=2或x=-2(舍去),
则AB=2x=4.
点评:此题考查了切线的判定与性质,涉及的知识有:圆周角定理,锐角三角函数定义,全等三角形的判定与性质,切线的证明方法有两种:有点连接,证垂直;无点作垂线,证明垂线段等于半径.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网