题目内容
【题目】如图,D是直径AB上一定点,E,F分别是AD,BD的中点,P是上一动点,连接PA,PE,PF.已知AB=6cm,设A,P两点间的距离为xcm,P,E两点间的距离为y1cm,P,F两点间的距离为y2cm.
小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.
下面是小腾的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0.97 | 1.27 |
| 2.66 | 3.43 | 4.22 | 5.02 |
y2/cm | 3.97 | 3.93 | 3.80 | 3.58 | 3.25 | 2.76 | 2.02 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;
(3)结合函数图象,解决问题:当△PEF为等腰三角形时,AP的长度约为 cm.
【答案】(1)1.90;(2)见解析;(3)3.5或3.8或4.8
【解析】
(1)通过画图、测量可得表中的所填数值;
(2)把表格的数据描到平面直角坐标系中,再用平滑的曲线连接即可画出函数y1,y2的图像;
(3)结合函数图像,即可得当△PEF为等腰三角形时,AP的长度.
(1)通过测量可知:
表中的所填数值是1.90,
故答案为:1.90;
(2)函数y1,y2的图象如图:
(3)观察图象可知:
△PEF为等腰三角形,①当PE=PF时,,两函数的交点,AP的长度约为3.8 cm;②当PE=EF时,,AP的长度约为3.5cm;③当PF=EF时,,AP的长度约为4.8 cm.
故答案为:3.5或3.8或4.8.
【题目】如图,在正方形ABCD中,AB=4,E、F是对角线AC上的两个动点,且EF=2,P是正方形四边上的任意一点.若△PEF是等边三角形,则符合条件的P点共有_____个,此时AE的长为_____.
【题目】经过举国上下抗击新型冠状病毒的斗争,疫情得到了有效控制,国内各大企业在2月9日后纷纷进入复工状态.为了了解全国企业整体的复工情况,我们查找了截止到2020年3月1日全国部分省份的复工率,并对数据进行整理、描述和分析.下面给出了一些信息:
a.截止3月1日20时,全国已有11个省份工业企业复工率在90%以上,主要位于东南沿海地区,位居前三的分别是贵州(100%)、浙江(99.8%)、江苏(99%).
b.各省份复工率数据的频数分布直方图如图1(数据分成6组,分别是40<x≤50;
50<x≤60;60<x≤70;70<x≤80;80<x≤90;90<x≤100):
c.如图2,在b的基础上,画出扇形统计图:
d.截止到2020年3月1日各省份的复工率在80<x≤90这一组的数据是:
81.3 | 83.9 | 84 | 87.6 | 89.4 | 90 | 90 |
e.截止到2020年3月1日各省份的复工率的平均数、中位数、众数如下:
日期 | 平均数 | 中位数 | 众数 |
截止到2020年3月1日 | 80.79 | m | 50,90 |
请解答以下问题:
(1)依据题意,补全频数分布直方图;
(2)扇形统计图中50<x≤60这组的圆心角度数是 度(精确到0.1).
(3)中位数m的值是 .
(4)根据以上统计图表简述国内企业截止3月1日的复工率分布特征.