题目内容

【题目】如图,⊙O为等腰三角形ABC的外接圆,AB=AC.AD是⊙O的直径,切线DE与AC的延长线相交于点E.
(1)求证:DE∥BC;
(2)若DF=n,∠BAC=2a,写出求CE长的思路.

【答案】
(1)证明:∵AB=AC,

=

而AD为直径,

∴AD垂直平分BC,

∵DE为切线,

∴AD⊥DE,

∴DE∥BC


(2)解:作CH⊥DE于H,如图,易得四边形CFDH为矩形,

∴CH=DF=n,

∵CH∥AD,

∴∠ECH=∠CAD=α,

在Rt△CEH中,∵cos∠ECH=

∴CE=


【解析】(1)由AB=AC得到 = ,则根据垂径定理的推论得到AD垂直平分BC,再根据切线的性质得AD⊥DE,然后根据平行线的判定方法可得DE∥BC;(2)作CH⊥DE于H,如图,易得四边形CFDH为矩形,则CH=DF=n,再利用平行线的性质得∠ECH=∠CAD=α,然后在Rt△CEH中利用余弦的定义可计算出CE的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网