题目内容

先观察下列等式,再回答问题
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2

1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6

1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

(1)根据上面三个等式提供的信息,请猜想
1+
1
92
+
1
102
=______.
(2)请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式,并加以验证.
(1)
1+
1
92
+
1
102
=1
1
90

故答案为1
1
90


(2)
1+
1
n2
+
1
(n+1)2
=1+
1
n(n+1)
(n为正整数).验证如下:
1+
1
n2
+
1
(n+1)2
=
1+
(n+1)2+n2
n2(n+1)2
=
1+
2n2+2n+1
n2(n+1)2
=
1+
2n(n+1)
n2(n+1)2
+
1
n2(n+1)2
=
1+
2
n(n+1)
+
1
n2(n+1)2
=
[1+
1
n(n+1)
]
2
=1+
1
n(n+1)

1+
1
n2
+
1
(n+1)2
=1+
1
n(n+1)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网