题目内容
【题目】已知二次函数y=x2+bx+c的图象过点A(﹣3,0)和点B(1,0),且与y轴交于点C,D点在抛物线上且横坐标是﹣2.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值.
【答案】(1)y=x2+2x﹣3;(2)
【解析】试题分析: (1)把A(-3,0)和点B(1,0),代入y=x2+bx+c,建立关于b,c的二元一次方程组,求出b,c即可;
(2)先求出抛物线的对称轴,又因为A,B关于对称轴对称,所以连接BD与对称轴的交点即为所求P点.
试题解析:
(1)将A(-3,0),B(1,0)代入y=x2+bx+c,
得,解得
∴y=x2+2x-3;
(2)∵y=x2+2x-3=(x+1)2-4
∴对称轴x=-1,
又∵A,B关于对称轴对称,
∴连接BD与对称轴的交点即为所求P点.
过D作DF⊥x轴于F将x=-2代入y=x2+2x-3,
则y=4-4-3=-3,
∴D(-2,-3)
∴DF=3, BF=1-(-2)=3
Rt△BDF中,BD=
∵PA=PB,
∴PA+PD=BD=3
故PA+PD的最小值为.
【题目】某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲乙两组学生成绩如下,甲组:30,60,60,60,60,60,70,90,90,100 ;乙组:50,60,60,60,70,70,70,70,80,90.
(1)以上成绩统计分析表中a=______分,b=______分,c=_______分;
组别 | 平均数 | 中位数 | 方差 | 合格率 | 优秀率 |
甲组 | 68分 | a | 376 | 30% | |
乙组 | b | c | 90% |
(2)小亮同学说:这次竞赛我得了70分,在我们小组中属于中游略偏上,观察上面表格判断,小亮可能是甲乙哪个组的学生?并说明理由
(3)计算乙组的方差和优秀率,如果你是该校数学竞赛的教练员,现在需要你选一组同学代表学校参加复赛,你会选择哪一组?并说明理由