题目内容
【题目】在等边△ABC中.
(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;
(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.
①依题意将图2补全;
②求证:PA=PM.
【答案】(1)80°(2)①见解析(2)证明见解析
【解析】
(1)根据等边三角形的性质得到∠B=60°,由三角形的外角等于不相邻的两个内角和得出∠APC的度数,再由等边对等角即可得出结论;
(2)①根据题意补全图形;
②证明△APM为等边三角形即可得出结论.
(1)∵△ABC为等边三角形,∴∠B=60°,∴∠APC=∠BAP+∠B=80°.
∵AP=AQ,∴∠AQB=∠APC=80°.
(2)① 补全图形如图所示.
②过点A作AH⊥BC于点H,如图,∵△ABC为等边三角形,AP=AQ,∴∠PAH=∠QAH,∠BAH=∠CAH,∴∠PAB=∠QAC.
∵点Q,M关于直线AC对称,∴∠QAC=∠MAC,AQ=AM,∴∠PAB=∠MAC,AP=AM.
∵∠BAC=60°,∴∠PAM=∠BAC=60°.
∵AP=AM,∴△APM为等边三角形,∴PA=PM.
练习册系列答案
相关题目
【题目】有这样一个问题:探究函数 的图象与性质.
小慧根据学习函数的经验,对函数 的图象与性质进行了探究.
下面是小慧的探究过程,请补充完成:
(1)函数 的自变量x的取值范围是;
(2)列出y与x的几组对应值.请直接写出m的值,m=;
x | … | -3 | -2 | 0 | 1 | 1.5 | 2.5 | m | 4 | 6 | 7 | … |
y | … | 2.4 | 2.5 | 3 | 4 | 6 | -2 | 0 | 1 | 1.5 | 1.6 | … |
(3)请在平面直角坐标系 , 描出以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,写出该函数的两条性质:
①;
② .