题目内容
【题目】如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.
(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;
(2)当△OPA的面积为10时,求点P的坐标.
【答案】(1)﹣4x+40,(0<x<10).(2)(, ).
【解析】(1)根据三角形的面积公式S△OPA=OAy,然后把y转换成x,即可求得△OPA的面积S与x的函数关系式;
(2)把s=10代入S=﹣4x+40,求得x的值,把x的值代入y=﹣x+10即可求得P的坐标.
解(1)∵A(8,0),
∴OA=8,
S=OA|yP|=×8×(﹣x+10)=﹣4x+40,(0<x<10).
(2)当S=10时,则﹣4x+40=10,解得x=,
当x=时,y=﹣+10=,
∴当△OPA的面积为10时,点P的坐标为(, ).
练习册系列答案
相关题目
【题目】在2016CCTV英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取利了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表:
根据所给信息,解答下列问题:
(1)在表中的频数分布表中,m= ,n= .
成绩 | 频数 | 频率 |
60≤x<70 | 60 | 0.30 |
70≤x<80 | m | 0.40 |
80≤x<90 | 40 | n |
90≤x≤100 | 20 | 0.10 |
(2)请补全图中的频数分布直方图.
(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参数,请估计约有多少人进入决赛?