题目内容

如图,⊙P的圆心为P(﹣3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.
(1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系.
(2)若点N在(1)中的⊙P′上,求PN的长.
解:(1)如图所示,⊙P′即为所求作的圆。

⊙P′与直线MN相交。
(2)设直线PP′与MN相交于点A,

则由⊙P的圆心为P(﹣3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在⊙P′上,得
P′N=3,AP′=2,PA=8。
∴在Rt△AP′N中,

在Rt△APN中,
网格问题,作图(轴对称变换),直线与圆的位置关系,勾股定理。
(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等找出点P′的位置,然后以3为半径画圆即可。再根据直线与圆的位置关系解答。
(2)设直线PP′与MN相交于点A,在Rt△AP′N中,利用勾股定理求出AN的长度,在Rt△APN中,利用勾股定理列式计算即可求出PN的长度。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网