题目内容
【题目】如图所示,在△ABC中,BE平分∠ABC,DE∥BC.
(1)试猜想△BDE的形状,并说明理由;
(2)若∠A=35°,∠C=70°,求∠BDE的度数.
【答案】(1) △BDE是等腰三角形,理由见解析;(2)∠BDE=105°
【解析】
(1)由角平分线和平行线的性质可得到∠BDE=∠DEB,可证得结论;(2)由∠A=35°,∠C=70°可求出∠ABC=75°,然后利用角平分线和平行线的性质可得到∠BDE=∠DEB即可求解.
(1)△BDE是等腰三角形,
理由:∵BE平分∠ABC,∴∠ABE=∠EBC,
∵DE∥BC,∴∠DEB=∠EBC=∠ABE,
∴BD=ED,
∴△DBE为等腰三角形;
(2)∵ ∠A=35°,∠C=70°,∴∠ABC=75°,
∵BE平分∠ABC,DE∥BC,∴∠DEB=∠EBC=∠ABE=37.5°,
∴∠BDE=105°.
练习册系列答案
相关题目
【题目】光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:
每台甲型收割机的租金 | 每台乙型收割机的租金 | |
A地区 | 1800 | 1600 |
B地区 | 1600 | 1200 |
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.