题目内容

【题目】已知:如图,在ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.
(1)求证:△ABE≌△CDF;
(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.

【答案】
(1)证明:∵四边形ABCD是平行四边形,

∴AB=CD,∠BAE=∠DCF,

在△ABE和△CDF中,

∴△ABE≌△CDF(SAS)


(2)解:四边形BEDF是菱形;理由如下:如图所示:

∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,

∵AE=CF,

∴DE=BF,

∴四边形BEDF是平行四边形,

∴OB=OD,

∵DG=BG,

∴EF⊥BD,

∴四边形BEDF是菱形.


【解析】(1)由平行四边形的性质得出AB=CD,∠BAE=∠DCF,由SAS证明△ABE≌△CDF即可;(2)由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,得出四边形BEDF是平行四边形,得出OB=OD,再由等腰三角形的三线合一性质得出EF⊥BD,即可得出四边形BEDF是菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网