题目内容
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:
①abc<0;②b2﹣4ac>0;③3a+c<0;④16a+4b+c>0.
其中正确结论的个数是( )
A.1个
B.2个
C.3个
D.4个
【答案】C
【解析】解:由开口向上,可得a>0,又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b<0,abc>0,故①错误;
由抛物线与x轴有两个交点,可得b2﹣4ac>0,故②正确;
由抛物线的对称轴为直线x=1,可得b=﹣2a,再由当x=﹣1时y<0,即a﹣b+c<0,3a+c<0,故③正确;
根据对称轴和图可知,抛物线与x轴的另一交点在3和4之间,所以当x=4时,y>0,即可得16a+4b+c>0,故④正确,
故选:C.
由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c的符号,即得abc的符号;
由抛物线与x轴有两个交点判断即可;
由抛物线的对称轴为直线x=1,可得b=﹣2a,然后把x=﹣1代入方程即可求得相应的y的符号;
根据对称轴和图可知,抛物线与x轴的另一交点在3和4之间,所以当x=4时,y>0,即可得16a+4b+c>0.
练习册系列答案
相关题目