题目内容
【题目】将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A( ,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.
(1)如图①,当点A′与顶点B重合时,求点M的坐标;
(2)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;
(3)当S= 时,求点M的坐标(直接写出结果即可).
【答案】
(1)
解:在Rt△ABO中,点A( ,0),点B(0,1),点O(0,0),
∴OA= ,OB=1,
由OM=m,可得:AM=OA﹣OM= ﹣m,
根据题意,由折叠可知△BMN≌△AMN,
∴BM=AM= ﹣m,
在Rt△MOB中,由勾股定理,BM2=OB2+OM2,
可得: ,解得m= ,
∴点M的坐标为( ,0);
(2)
解:在Rt△ABO中,tan∠OAB= ,
∴∠OAB=30°,
由MN⊥AB,可得:∠MNA=90°,
∴在Rt△AMN中,MN=ANsin∠OAB= ,
AN=ANcos∠OAB= ,
∴ ,
由折叠可知△A'MN≌△AMN,则∠A'=∠OAB=30°,
∴∠A'MO=∠A'+∠OAB=60°,
∴在Rt△COM中,可得CO=OMtan∠A'MO= m,
∴ ,
∵ ,
∴ ,
即 ;
(3)
解:①当点A′落在第二象限时,把S的值代入(2)中的函数关系式中,解方程求得m,根据m的取值范围判断取舍,两个根都舍去了;
②当点A′落在第一象限时,则S=SRt△AMN,根据(2)中Rt△AMN的面积列方程求解,根据此时m的取值范围,把S= 代入,可得点M的坐标为( ,0).
【解析】(1)根据折叠的性质得出BM=AM,再由勾股定理进行解答即可;(2)根据勾股定理和三角形的面积得出△AMN,△COM和△ABO的面积,进而表示出S的代数式即可;(3)把S= 代入解答即可.
【考点精析】关于本题考查的翻折变换(折叠问题),需要了解折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能得出正确答案.
【题目】某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.
(1)根据题意,填写如表:
蔬菜的批发量(千克) | … | 25 | 60 | 75 | 90 | … |
所付的金额(元) | … | 125 | 300 | … |
(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;
(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?