题目内容
如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且CF=AC.
(1)求∠ACB的度数;
(2)若AC=8,求△ABF的面积.
(1)求∠ACB的度数;
(2)若AC=8,求△ABF的面积.
(1)∠ACB=120°.
(2)24
(2)24
试题分析:(1)连接DC,由AB是⊙C的切线,可知CD⊥AB,根据CD=AC,得出∠A=30°,又AC=BC,从而可求得∠ACB的度数.
(2)由(1)可得∠ACD=∠BCD=∠BCF,从而可得△ACD≌△BCF,求得∠AFB=90°,已知AC=8,根据已知求得AF=12,由于∠A=30°得出BF=AB,由勾股定理求得BF的长,从而可求得三角形的面积.
试题解析:(1)连接CD,
∵AB是⊙C的切线,
∴CD⊥AB,
∵CF=AC,CF=CE,
∴AE=CE,
∴ED=AC=EC,
∴ED=EC=CD,
∴∠ECD=60°,
∴∠A=30°,
∵AC=BC,
∴∠ACB=120°.
(2)∵∠A=30°,AC=BC,
∴∠ABC=30°,
∴∠BCE=60°,
在△ACD与△BCF中
∴△ACD≌△BCF(SAS)
∴∠ADC=∠BFC,
∵CD⊥AB,
∴CF⊥BF,
∵AC=8,CF=AC.
∴CF=4,
∴AF=12,
∵∠AFB=90°,∠A=30°,
∴BF=AB,
设BF=x,则AB=2x,
∵AF2+BF2=AB2,
∴(2x)2﹣x2=122
解得:x=4
即BF=4
∴S△ABF=
练习册系列答案
相关题目