题目内容
【题目】有一组数据:3,a, 4,8,9,它们的平均数是6,则a是_______.
【答案】6
【题目】如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD
其中正确结论的为______(请将所有正确的序号都填上).
【题目】如图,小明所在教学楼的每层高度为3.5米,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B处测得M的仰角为31°,已知每层楼的窗台离该层的地面高度均为1米,求旗杆MN的高度;(结果保留两位小数)
(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
【题目】阅读可以增进人们的知识也能陶冶人们的情操.我们要多阅读,多阅读有营养的书.因此我校对学生的课外阅读时间进行了抽样调查,将收集的数据分成、、、、五组进行整理,并绘制成如图所示的统计图表(图中信息不完整).
请结合以上信息解答下列问题
(1)求, , 的值;
(2)补全“阅读人数分组统计图”;
(3)估计全校课外阅读时间在以下(不含)的学生所占百分比.
【题目】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有 (写出所有正确结论的序号)
①△CMP∽△BPA;
②四边形AMCB的面积最大值为10;
③当P为BC中点时,AE为线段NP的中垂线;
④线段AM的最小值为;
⑤当△ABP≌△ADN时,BP=.
【题目】如图,在矩形ABCD中,AC是对角线,E、F分别在BC、AD边上,将边AB沿AE折叠,点B落在对角线AC上的G处,将边CD沿CF折叠,点D落在对角线AC上的点H处 .
(1)求证:四边形AECF是平行四边形.
(2)若AB=6,AC=10,求BE的长.
【题目】有一个周长为40厘米的正方形,从四个角各剪去一个正方形,做成一个无盖盒子.设这个盒子的底面积为y,剪去的正方形的边长为x,求有关y的二次函数.
【题目】过点A(-2,5)作x轴的垂线L,则直线L上的点的坐标特点是 .
【题目】如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.
(1)求证:△ABD≌△EBD;
(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.