题目内容
【题目】如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.
(1)求证:AC是⊙O的切线;
(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.
【答案】(1)详见解析;(2)
【解析】
(1)连接OE.根据OB=OE得到∠OBE=∠OEB,然后再根据BE是△ABC的角平分线得到∠OEB=∠EBC,从而判定OE∥BC,最后根据∠C=90°得到∠AEO=∠C=90°证得结论AC是⊙O的切线.
(2)连接OF,利用S阴影部分=S梯形OECF-S扇形EOF求解即可.
解:(1)连接OE.
∵OB=OE
∴∠OBE=∠OEB
∵BE是∠ABC的角平分线
∴∠OBE=∠EBC
∴∠OEB=∠EBC
∴OE∥BC
∵∠C=90°
∴∠AEO=∠C=90°
∴AC是⊙O的切线;
(2)连接OF.
∵sinA=,∴∠A=30°
∵⊙O的半径为4,∴AO=2OE=8,
∴AE=,∠AOE=60°,∴AB=12,
∴BC=AB=6,AC=6
,
∴CE=AC﹣AE=2.
∵OB=OF,∠ABC=60°,
∴△OBF是正三角形.
∴∠FOB=60°,CF=6﹣4=2,∴∠EOF=60°.
∴S梯形OECF=(2+4)×2
=6
.
S扇形EOF=,
∴S阴影部分=S梯形OECF﹣S扇形EOF=.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目