题目内容
【题目】如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.
(1)求证:AE=CF;
(2)求证:四边形EBFD是平行四边形.
【答案】证明:(1)如图:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,∠3=∠4,
∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2
∴∠5=∠6
∵在△ADE与△CBF中,
∴△ADE≌△CBF(ASA),
∴AE=CF;
(2)证明:∵∠1=∠2,
∴DE∥BF.
又∵由(1)知△ADE≌△CBF,
∴DE=BF,
∴四边形EBFD是平行四边形.
【解析】(1)通过全等三角形△ADE≌△CBF的对应边相等证得AE=CF;
(2)根据平行四边形的判定定理:对边平行且相等的四边形是平行四边形证得结论.
练习册系列答案
相关题目