题目内容
【题目】如图,在正方形ABCD中,以AB为边在正方形内作等边△ABE,连接DE,CE,则∠CED的度数为
【答案】150°
【解析】解:∵四边形ABCD是正方形,
∴∠BAD=∠ABC=∠ADC=∠BCD=90°,AB=BC=CD=DA,
∵△ABE是等边三角形,
∴AB=AE=BE,∠BAE=∠ABE=60°,
∴AE=AD=BE=BC,∠DAE=∠CBE=30°,
∴∠ADE=∠BCE=(180°﹣30°)=75°,
∴∠EDC=∠ECD=15°,
∴∠CED=180°﹣15°﹣15°=150°.
故答案为:150°.
由正方形和等边三角形的性质得出AE=AD=BE=BC,∠DAE=∠CBE=30°,求出∠ADE=∠BCE=75°,再求出∠EDC=∠ECD=15°,即可得出∠CED.
练习册系列答案
相关题目