题目内容
【题目】如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论
①6a﹣b=0;
②abc>0;
③若点M(﹣2,m)与点N(﹣5,n)为抛物线上两点,则m>n;
④ax2+bx+c≥﹣6;
⑤关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1.其中正确结论有( )
A. 5B. 4C. 3D. 2
【答案】C
【解析】
根据题意和函数图象,可以判断各个小题中的结论是否正确,本题得以解决.
解:①∵抛物线的顶点坐标为(﹣3,﹣6),
∴﹣=﹣3,
∴b=6a,
∴6a﹣b=0,结论①正确;
②∵抛物线开口向上,与y轴交于负半轴,
∴a>0,b=6a>0,c<0,
∴abc<0,结论②错误;
③∵抛物线的顶点坐标为(﹣3,﹣6),点M(﹣2,m)在抛物线上,
∴点(﹣4,m)在抛物线上.
∵在x<﹣3上,y随x值的增大而减小,点N(﹣5,n)在抛物线上,
∴m<n,结论③错误;
④∵抛物线的顶点坐标为(﹣3,﹣6),抛物线开口向上,
∴ax2+bx+c≥﹣6,结论④正确;
⑤∵抛物线y=ax2+bx+c经过点(﹣1,﹣4),抛物线的顶点坐标为(﹣3,﹣6),
∴抛物线y=ax2+bx+c经过点(﹣5,﹣4),
∴关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,结论⑤正确.
故选:C.
练习册系列答案
相关题目