题目内容
如图,Rt△ABC中,分别以AB、AC为斜边,向△ABC的内侧作等腰Rt△ABE、Rt△ACD,点M是BC的中点,连接MD、ME.
(1)若AB=8,AC=4,求DE的长;
(2)求证:AB-AC=2DM.
(1)若AB=8,AC=4,求DE的长;
(2)求证:AB-AC=2DM.
(1);(2)证明见解析.
试题分析:(1)根据三角函数求得AE和AD的长,二者的差就是所求.
(2)延长CD交AB于点F,证明MD是△BCF的中位线,AF=AC,据此即可证得.
(1)直角△ABE中,AE=AB=,
在直角△ACD中,AD=AC=,
则DE=AE-AD=-=.
如图,延长CD交AB于点F.
在△ADF和△ADC中,∠FAD=∠CAD,AD=AD,∠ADF=∠ADC,∴△ADF≌△ADC(ASA).∴AC=AF,CD=DF.
又∵M是BC的中点,∴DM是△CBF的中位线.∴DM=BF=(AB-AF)=(AB-AC).
∴AB-AC=2DM.
练习册系列答案
相关题目