题目内容
【题目】如图,等腰三角形△ABC的腰长AB=AC=25,BC=40,动点P从B出发沿BC向C运动,速度为10单位/秒.动点Q从C出发沿CA向A运动,速度为5单位/秒,当一个点到达终点的时候两个点同时停止运动,点P′是点P关于直线AC的对称点,连接P′P和P′Q,设运动时间为t秒.
(1)若当t的值为m时,PP′恰好经过点A,求m的值.
(2)设△P′PQ的面积为y,求y与t之间的函数关系式(m<t≤4)
(3)是否存在某一时刻t,使PQ平分角∠P′PC?存在,求相应的t值,不存在,请说明理由.
【答案】
(1)解:如图1中,作AM⊥BC于M.
∵AB=AC=25,AM⊥BC,
∴BM=MC=20,
在Rt△ABM中,AM= = =15,
当PP′恰好经过点A,∵cos∠C= = ,
∴ = ,
∴t= .
∴m= s
(2)解:如图2中,设PP′交AC于N.
当 <t≤4时,由△PCN∽△ACM,可得PC=40﹣10t,PN=P′N=24﹣6t,CN=32﹣8t,
∵CQ=5t,
∴NQ=CN﹣CQ=32﹣13t,
∴y= PP′NQ= (48﹣12t)(32﹣13t)=78t2﹣504t+768( <t≤4)
(3)解:存在.理由如下:
如图3中,作QE⊥BC于E.
∵PQ平分∠CPP′,QE⊥PC,QN⊥PP′,
∴QN=QE,
∵sin∠C= = ,
∴t=2,
∴t=2时,PQ平分角∠P′PC
【解析】(1)由∠C的余弦定义既在Rt△APC,又可在Rt△ACM中列出比例式,二者相等,构建方程,求出m;(2)由△PCN∽△ACM,可表示出PC=40﹣10t,PN=P′N=24﹣6t,CN=32﹣8t,代入面积公式,即可得y= PP′NQ=78t2﹣504t+768;(3)利用∠C的正弦有两种表示的比例式,二者相等,可列出方程,求出t.
【考点精析】本题主要考查了相似三角形的判定与性质和锐角三角函数的定义的相关知识点,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数才能正确解答此题.
【题目】甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
平均成绩/环 | 中位数/环 | 众数/环 | 方差 | |
甲 | 7 | 7 | 1.2 | |
乙 | 7 | 8 | 4.2 |
(1)写出表格中,的值;
(2)从方差的角度看,若选派其中一名参赛,你认为应选哪名队员?并说明理.
【题目】为了提高学生汉字书写的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试方法是:听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:
组别 | 成绩x(分) | 频数(人数) | 频率 |
一 | 50≤x<60 | 2 | 0.04 |
二 | 60≤x<70 | 10 | 0.2 |
三 | 70≤x<80 | 14 | b |
四 | 80≤x<90 | a | 0.32 |
五 | 90≤x<100 | 8 | 0.16 |
请根据表格提供的信息,解答以下问题:
(1)直接写出表中a= , b=;
(2)请补全右面相应的频数分布直方图;
(3)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
(4)请根据得到的统计数据,简要分析这些同学的汉字书写能力,并为提高同学们的书写汉字能力提一条建议(所提建议不超过20字)