题目内容
【题目】如图,一艘船由A港沿北偏东60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.
(1)求A,C两港之间的距离(结果保留到0.1km,参考数据:≈1.414,≈1.732);
(2)确定C港在A港的什么方向.
【答案】(1)A、C两地之间的距离为14.1km;(2)C港在A港北偏东15°的方向上.
【解析】
(1)根据方位角的定义可得出∠ABC=90°,再根据勾股定理可求得AC的长为14.1.
(2)由(1)可知△ABC为等腰直角三角形,从而得出∠BAC=45°,求出∠CAM=15°,
所而确定C港在A港的什么方向.
(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.
∵AB=BC=10,∴AC==≈14.1.
答:A、C两地之间的距离为14.1km.
(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,
∴C港在A港北偏东15°的方向上.
练习册系列答案
相关题目