题目内容
【题目】已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C,D分别落在边BC下方的点C′,D′处,且点C′,D′,B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G. 当AB=5时,△EFG的周长为_________________.
【答案】10
【解析】根据翻折的性质可得CE=C′E,再根据直角三角形30°角所对的直角边等于斜边的一半判断出∠EBC′=30°,然后求出∠BGD′=60°,根据对顶角相等可得∠FGE=∠BGD′=60°,根据两直线平行,内错角相等可得∠AFG=∠FGE,再求出∠EFG=60°,然后判断出△EFG是等边三角形,根据等边三角形的性质表示出EF,即可得解.
如图,
由翻折的性质得,CE=C′E,
∵BE=2CE,
∴BE=2C′E,
又∵∠C′=∠C=90°,
∴∠EBC′=30°,
∵∠FD′C′=∠D=90°,
∴∠BGD′=60°,
∵AD∥BC,
∴∠AFG=∠FGE=60°,
∴∠EFG=(180°-∠AFG)=(180°-60°)=60°,
∴△EFG是等边三角形,
∵AB=5,
∴EF=5÷=,
∴△EFG的周长=3×=10.
故答案为:10.
练习册系列答案
相关题目
【题目】台风“利奇马”给我县带来极端风雨天气,有一个水库8月9日8:00的水位为﹣0.1m(以10m为警戒线,记高于警戒线的水位为正)在以后的6个时刻测得的水位升降情况如下(记上升为正,单位:m)
时刻 | 1 | 2 | 3 | 4 | 5 | 6 |
升降 | 0.5 | ﹣0.4 | 0.6 | ﹣0.5 | 0.2 | ﹣0.8 |
(1)根据记录的数据,求第2个时刻该水库的实际水位;
(2)在这6个时刻中,该水库最高实际水位是多少?
(3)经过6次水位升降后,水库的水位超过警戒线了吗?