题目内容
【题目】如图,在平面角坐标系xOy中,有一个等腰直角三角形△AOB,∠OAB=90°,直角边AO在x轴上,且AO=1,将Rt△AOB绕原点O顺时针旋转90°后,再将各边长扩大一倍,得到等腰直角三角形A1OB1;将Rt△A1OB1绕原点O顺时针转90°后,再将各边长扩大一倍,得到等腰三角形A2OB2......依此规律,得到等腰直角三角形A2017OB2017,则点B2017的坐标_________ .
【答案】(22017,-22017)
【解析】
根据题意得出B点坐标变化规律,进而得出点B2017的坐标位置,进而得出答案.
∵△AOB是等腰直角三角形,OA=1,
∴AB=OA=1,
∴B(1,1),
将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,
再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,
∴每4次循环一周,B1(2,-2),B2(-4,-4),B3(-8,8),B4(16,16),
∵2017÷4=504…1,
∴点B2017与B1同在一个象限内,
∵-4=-22,8=23,16=24,
∴点B2017(22017,-22017).
故答案为(22017,-22017).
练习册系列答案
相关题目