题目内容
【题目】如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2=(x﹣3)2+n交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论:①两条抛物线的对称轴距离为5;②x=0时,y2=5;③当x>3时,y1﹣y2>0;④y轴是线段BC的中垂线.正确结论是________(填写正确结论的序号).
【答案】①③④
【解析】
根据题意分别求出两个二次函数的解析式,根据函数的对称轴判定①;令x=0,求出y2的值,比较判定②;观察图象,判定③;令y=3,求出A、B、C的横坐标,然后求出AB、AC的长,判定④.
∵抛物线y1=a(x+2)2+m与抛物线y2=(x﹣3)2+n的对称轴分别为x=-2,x=3,
∴两条抛物线的对称轴距离为5,故①正确;
∵抛物线y2=(x﹣3)2+n交于点A(1,3),
∴2+n=3,即n=1;
∴y2=(x﹣3)2+1,
把x=0代入y2=(x﹣3)2+1得,y=≠5,②错误;
由图象可知,当x>3时,y1>y2,∴x>3时,y1﹣y2>0,③正确;
∵抛物线y1=a(x+2)2+m过原点和点A(1,3),
∴,
解得 ,
∴.
令y1=3,则,
解得x1=-5,x2=1,
∴AB=1-(-5)=6,
∴A(1,3),B(-5,3);
令y2=3,则(x﹣3)2+1=3,
解得x1=5,x2=1,
∴C(5,3),
∴AC=5-1=4,
∴BC=10,
∴y轴是线段BC的中垂线,故④正确.
故答案为①③④.
练习册系列答案
相关题目