题目内容
【题目】如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0,8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上的一动点,连接CD,DE,以CD,DE为边作CDEF.
(1)当0<m<8时,求CE的长(用含m的代数式表示);
(2)当m=3时,是否存在点D,使CDEF的顶点F恰好落在y轴上?若存在,求出点D的坐标;若不存在,请说明理由;
(3)点D在整个运动过程中,若存在唯一的位置,使得CDEF为矩形,请求出所有满足条件的m的值.
【答案】
(1)
解:∵A(6,0),B(0,8).
∴OA=6,OB=8.
∴AB=10,
∵∠CEB=∠AOB=90°,
又∵∠OBA=∠EBC,
∴△BCE∽△BAO,
∴ = ,即 = ,
∴CE= ﹣ m
(2)
解:∵m=3,
∴BC=8﹣m=5,CE= ﹣ m=3.
∴BE=4,
∴AE=AB﹣BE=6.
∵点F落在y轴上(如图2).
∴DE∥BO,
∴△EDA∽△BOA,
∴ = 即 = .
∴OD= ,
∴点D的坐标为( ,0)
(3)
解:取CE的中点P,过P作PG⊥y轴于点G.
则CP= CE= ﹣ m.
(Ⅰ)当m>0时,
①当0<m<8时,如图3.易证∠GCP=∠BAO,
∴cos∠GCP=cos∠BAO= ,
∴CG=CPcos∠GCP= ( ﹣ m)= ﹣ m.
∴OG=OC+CG=m+ ﹣ m= m+ .
根据题意得,得:OG=CP,
∴ m+ = ﹣ m,
解得:m= ;
②当m≥8时,OG>CP,显然不存在满足条件的m的值.
(Ⅱ)当m=0时,即点C与原点O重合(如图4).
(Ⅲ)当m<0时,
①当点E与点A重合时,(如图5),
易证△COA∽△AOB,
∴ = ,即 = ,
解得:m=﹣ .
②当点E与点A不重合时,(如图6).
OG=OC﹣CG=﹣m﹣( ﹣ m)
=﹣ m﹣ .
由题意得:OG=CP,
∴﹣ m﹣ = ﹣ m.
解得m=﹣ .
综上所述,m的值是 或0或﹣ 或﹣ .
【解析】(1)首先证明△BCE∽△BAO,根据相似三角形的对应边的比相等即可求得;(2)证明△EDA∽△BOA,根据相似三角形的对应边的比相等即可求得;(3)分m>0,m=0和m<0三种情况进行讨论,当m=0时,一定成立,当m>0时,分0<m<8和m>8两种情况,利用三角函数的定义即可求解.当m<0时,分点E与点A重合和点E与点A不重合时,两种情况进行讨论.