题目内容

【题目】如图,抛物线y=a(x﹣1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(﹣1,0)
(1)求该抛物线的解析式;
(2)求梯形COBD的面积.

【答案】
(1)解:将A(﹣1,0)代入y=a(x﹣1)2+4中,得:0=4a+4,

解得:a=﹣1,

则抛物线解析式为y=﹣(x﹣1)2+4


(2)解:对于抛物线解析式,令x=0,得到y=3,即OC=3,

∵抛物线解析式为y=﹣(x﹣1)2+4的对称轴为直线x=1,

∴CD=1,

∵A(﹣1,0),

∴B(3,0),即OB=3,

则S梯形COBD= =6


【解析】(1)将A坐标代入抛物线解析式,求出a的值,即可确定出解析式;(2)抛物线解析式令x=0求出y的值,求出OC的长,根据对称轴求出CD的长,令y=0求出x的值,确定出OB的长,利用梯形面积公式即可求出梯形COBD的面积.
【考点精析】关于本题考查的二次函数的性质和抛物线与坐标轴的交点,需要了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网