题目内容

【题目】如图,直线y=x+n与x轴交于点A,与y轴交于点B(点A与点B不重合),抛物线y=﹣ x2﹣2x+c经过点A、B,抛物线的顶点为C.

(1)∠BAO=°;
(2)求tan∠CAB的值;
(3)在抛物线上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;如果不存在,请说明理由.

【答案】
(1)45
(2)

解:由(1)得:B(0,n),A(﹣n,0),

∵抛物线y=﹣ x2﹣2x+c经过点A、B

,解得 (舍去)

∴A(﹣6,0),B(0,6),直线AB的解析式为:y=x+6,

抛物线为:y=﹣ ﹣2x+6=﹣ (x+2)2+8,

∴抛物线的顶点为C(﹣2,8),

设抛物线的对称轴为直线l,连结BC,

如图1,过点B作BD⊥l,则BD=CD=2,BD∥x轴,

∴∠CBD=45°,

又BD∥x轴,

∴∠DBA=∠BAO=45°,

∴∠CBA=∠CBD+∠DBA=90°,

在Rt△CDB中,BC= =2

在Rt△AOB中,AB= =6

∴在Rt△ABC中,tan∠CAB= =


(3)

解:①当点P在CA左侧时,如图2,

延长BD交抛物线于点E,当∠PCA=∠BAC时,CP∥AB,

此时,点P与点E重合,点P的坐标是(﹣4,6);

②当点P在CA右侧时,如图3,过点A作AC的垂线交CP于点F,

过点A作y轴的平行线m,过点C作CM⊥m,过点F作FN⊥m,

由于tan∠BAC= ,所以tan∠ACF=tan∠ACP=

∵Rt△CMA∽Rt△ANF,

,AN= CM= ,NF= MA=

∴F(﹣ ,﹣ );

易求得直线CF的解析式为:y=7x+22,

,消去y,得x2+18x+32=0,

解得x=16或x=﹣2(舍去),

因此点P的坐标(﹣16,﹣90);

综上所述,P的坐标是(﹣4,6)或(﹣16,﹣90).


【解析】解:(1)y=x+n,
当x=0时,y=n,则B(0,n),
当y=0时,x=﹣n,则A(﹣n,0),
∴OA=OB=n,
∴△AOB是等腰直角三角形,
∴∠BAO=45°,
所以答案是:45;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网