题目内容
如图,已知等腰△ABC,AC=BC=10,AB=12,以BC为直径作⊙O交AB点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)求sin∠A的值.
(1)求证:直线EF是⊙O的切线;
(2)求sin∠A的值.
(1)证明:连接CD,OD,
∵BC是⊙O直径,
∴∠CDB=90°,即CD⊥AB,
∵AC=BC,
∴BD=AD,
∵BO=CO,
∴OD∥AC,
∵EF⊥AC,
∴EF⊥OD,
∵OD为半径,
∴EF是⊙O的切线;
(2)∵AB=12,AD=BD=6,AC=10,
在Rt△ACD中,由勾股定理得:CD=
=8,
即sinA=
=
=
.
∵BC是⊙O直径,
∴∠CDB=90°,即CD⊥AB,
∵AC=BC,
∴BD=AD,
∵BO=CO,
∴OD∥AC,
∵EF⊥AC,
∴EF⊥OD,
∵OD为半径,
∴EF是⊙O的切线;
(2)∵AB=12,AD=BD=6,AC=10,
在Rt△ACD中,由勾股定理得:CD=
102-62 |
即sinA=
CD |
AC |
8 |
10 |
4 |
5 |
练习册系列答案
相关题目