题目内容

如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.
(1)证明:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠ODA=∠CAD,
∴ODAC,
∵∠C=90°,
∴∠ODC=90°,
∴OD⊥BC,
∵OD为半径,
∴BC是⊙O切线;

(2)在Rt△ADC中,AC=8,CD=6,
由勾股定理得:AD=10.
连接DE,
∵AE为直径,
∴∠EDA=∠C=90°,
∵∠CAD=∠EAD,
∴△DCA△EDA,
AE
AD
=
AD
AC

AE
10
=
10
8

AE=12.5.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网