题目内容
【题目】如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,则下列结论: ①AE⊥AF;②EF:AF=:1;③AF2=FHFE;④FB:FC=HB:EC.正确的是___.
【答案】①②④.
【解析】
由旋转性质得到△AFB≌△AED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.
由题意知,△AFB≌△AED,∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°,∴AE⊥AF,故选项①正确;
∴△AEF是等腰直角三角形,有EF:AF:1,故选项②正确;
∵△AEF与△AHF不相似,∴AF2=FHFE不正确.故选项③错误.
∵HB∥EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故选项④正确.
故选①②④.
【题目】水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各 300 株分别种植在甲、乙两个大棚. 对于市场最为关注的产量和产量的稳定性,进行了抽样调查,从甲、乙两个大棚各收集了 24 株秧苗上的小西红柿的个数,并对数据进行整理、描述和分析。
下面给出了部分信息:(说明:45 个以下为产量不合格,45 个及以上为产量合格,其中 45~65 个为产量良好,65~85 个为产量优秀)
a.补全下面乙组数据的频数分布直方图(数据分成 6 组: 25≤x<35,35≤x<45,45≤x<55,55≤x<65,65≤x<75,75≤x<85):
b.乙组数据在产量良好(45≤x<65)这两组的具体数据为: 46 46 47 47 48 48 55 57 57 57 58 61
c.数据的平均数、众数和方差如下表所示:
大棚 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 52.25 | 51 | 58 | 238 |
乙 | 52.25 | 57 | 210 |
(1)补全乙的频数分布直方图.
(2)写出表中的值.
(3)根据样本情况,估计乙大棚产量良好及以上的秧苗数为 株.
(4)根据抽样调查情况,可以推断出 大棚的小西红柿秧苗品种更适应市场需求,写出理由.(至少从两个不同的角度说明推断的合理性).