题目内容
【题目】如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于点A、B.点C的坐标是(﹣1,0),抛物线y=ax2+bx﹣2经过A、C两点且交y轴于点D.点P为x轴上一点,过点P作x轴的垂线交直线AB于点M,交抛物线于点Q,连结DQ,设点P的横坐标为m(m≠0).
(1)求点A的坐标.
(2)求抛物线的表达式.
(3)当以B、D、Q,M为顶点的四边形是平行四边形时,求m的值.
【答案】(1)点A坐标为(4,0);(2)y=x2﹣x﹣2;(3)m=2或1+或1﹣.
【解析】
(1)直线y=﹣x+2中令y=0,即可求得A 点坐标;
(2)将A、C坐标代入,利用待定系数法进行求解即可;
(3)先求出BD的长,用含m的式子表示出MQ的长,然后根据BD=QM,得到关于m的方程,求解即可得.
(1)令y=﹣x+2=0,解得:x=4,
所以点A坐标为:(4,0);
(2)把点A、C坐标代入二次函数表达式,得
,
解得:,
故:二次函数表达式为:y=x2﹣x﹣2;
(3)y=﹣x+2中,令x=0,则y=2,故B(0,2),
y=x2﹣x﹣2中,令x=0,则y=-2,故D(0,-2),
所以BD=4,
设点M(m,﹣m+2),则Q(m,m2﹣m﹣2),
则MQ=|(m2﹣m﹣2)-(﹣m+2)|=|m2﹣m﹣4|
以B、D、Q,M为顶点的四边形是平行四边形时,
则:|MQ|=BD=4,
即|m2﹣m﹣4|=4,
当m2﹣m﹣4=-4时,
解得:m=2或m=0(舍去);
当m2﹣m﹣4=4时,
解得m=1±,
故:m=2或1+或1-.
练习册系列答案
相关题目