题目内容
【题目】如图,在ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.
【答案】证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠ADF=∠CFH,∠EAG=∠FCH,
∵E、F分别为AD、BC边的中点,
∴AE=DE= AD,CF=BF= BC,
∴DE∥BF,DE=BF,
∴四边形BFDE是平行四边形,
∴BE∥DF,
∴∠AEG=∠ADF,
∴∠AEG=∠CFH,
在△AEG和△CFH中, ,
∴△AEG≌△CFH(ASA),
∴AG=CH
【解析】由平行四边形的性质得出DE∥BF,DE=BF,进而得出四边形BFDE是平行四边形;再利用平行四边形的性质得出∠AEG=∠ADF,进而得出∠AEG=∠CFH,从而利用ASA判断出△AEG≌△CFH,最后利用全等三角形的性质得出AG=CH。
【考点精析】通过灵活运用平行四边形的判定与性质,掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积即可以解答此题.
练习册系列答案
相关题目