题目内容
【题目】如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB、CD边于点E、F.
(1)求证:四边形BEDF是平行四边形;
(2)求证:△ADE≌△CBF;
(3)当四边形BEDF是菱形时,直接写出线段EF的长.
【答案】(1)证明见解析;(2)证明见解析;(3)EF=.
【解析】
(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)根据△BOE≌△DOF可知DE=BF,由AD=BC,∠DAE=∠BCF=90°即可证明△ADE≌△CBF;(3)设BE=x,在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.
(1)证明:∵四边形ABCD是矩形,O是BD的中点,
∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,
∴∠OBE=∠ODF,
在△BOE和△DOF中,,
∴△BOE≌△DOF(ASA),
∴EO=FO,
∴四边形BEDF是平行四边形;
(2)∵四边形BEDF是平行四边形,
∴DE=BF,
∵矩形ABCD,
∴∠DAE=∠BCF=90°,AD=BC,
在Rt△ADE与Rt△CBF中
,
∴Rt△ADE≌Rt△CBF(HL);
(3)当四边形BEDF是菱形时,BD⊥EF,
设BE=x,则 DE=x,AE=6﹣x,
在Rt△ADE中,DE2=AD2+AE2,
∴x2=42+(6﹣x)2,
解得:x=,
∵BD= ,
∴OB=BD=,
∵BD⊥EF,
∴EO=,
∴EF=2EO=.
练习册系列答案
相关题目