题目内容
如图,在直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,点F是CD边上一点,将纸片沿BF折叠,点C落在E点,使直线BE经过点D,若BF=CF=8,则AD的长为 .


试题分析:利用等边对等角可以得到∠FBC=∠C=30°,再利用折叠的性质可以得到∠EBF=∠CBF=30°,从而可以求得∠BDF的度数,即可以求得线段BD,然后在直角三角形ABD中求解即可.
∵BF=CF=8,
∴∠FBC=∠C=30°,
∵折叠纸片使BC经过点D,点C落在点E处,BF是折痕,
∴∠EBF=∠CBF=30°,
∴∠EBC=60°,
∴∠BDF=90°
∵∠EBC=60°
∴∠ADB=60°,
∵BF=CF=8.
∴BD=BF•sin60°=

∴在Rt△BAD中,AD=BD×sin30°=

点评:解决此类题要懂得用梯形的常用辅助线,把梯形分割为矩形和直角三角形,从而由矩形和直角三角形的性质来求解.

练习册系列答案
相关题目