题目内容

【题目】阅读与应用:
阅读1:a、b为实数,且a>0,b>0,因为 ,所以 ,从而 (当a=b时取等号).
阅读2:函数 (常数m>0,x>0),由阅读1结论可知: ,所以当 时,函数 的最小值为
阅读理解上述内容,解答下列问题:
(1)问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为 ,周长为 ,求当x=时,周长的最小值为
(2)问题2:已知函数y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),当x=时, 的最小值为
(3)问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)

【答案】
(1)2;8
(2)3;8
(3)解:设学校学生人数为x人,则生均投入y元,依题意得
,因为x>0,所以 ,当 即x=800时,y取最小值26.
答:当学校学生人数为800时,该校每天生均投入最低,最低费用是26元
【解析】(1)问题1:∵当 ( x>0)时,周长有最小值,
∴x=2,
∴当x=2时, 有最小值为 =4.即当x=2时,周长的最小值为2×4=8;
( 2 )问题2:∵y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),

∵当x+1= (x>-1)时, 的最小值,
∴x=3,
∴x=3时, 有最小值为4+4=8,即当x=3时, 的最小值为8;
(1)利用已知的结论,当x=时,即x=2时,x+有最小值8;(2)把转化为一个整式加一个分式,即(x+1+)的形式,利用已知结论,求出最小值;(3)由已知抽象出函数关系式,转化为(2)的形式,求出最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网