题目内容
【题目】武汉某文化旅游公司为了在军运会期间更好地宣传武汉,在工厂定制了一批具有浓郁的武汉特色的商品.为了了解市场情况,该公司向市场投放,
型商品共
件进行试销,
型商品成本价
元/件,
商品成本价
元/件,其中
型商品的件数不大于
型的件数,且不小于
件,已知
型商品的售价为
元/件,
型商品的售价为
元/件,且全部售出.设投放
型商品
件,该公司销售这批商品的利润
元.
(1)直接写出与
之间的函数关系式:_______;
(2)为了使这批商品的利润最大,该公司应该向市场投放多少件型商品?最大利润是多少?
(3)该公司决定在试销活动中每售出一件型商品,就从一件
型商品的利润中捐献慈善资金
元,当该公司售完这
件商品并捐献资金后获得的最大收益为
元时,求
的值.
【答案】(1);(2)应投放
件
,最大利润为
元;(3)满足条件时
的值为
【解析】
(1)根据利润=(售价-成本)数量即可求出
与
之间的函数关系式.
(2)y与之间是一次函数关系式,根据一次函数的性质可知当x=125时y有最大值;
(3)捐献资金后获得的收益为;当
时
时
有最大值18000,即可求出a值.
(1)
(2)由题意可知,即
由一次函数的性质可知.越大,
越大
当时
∴应投放件
,最大利润为
元.
(3)一共捐出元
∴
∴当时
最大值小于
当时
时
有最大值.
即
∴
即满足条件时的值为
.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某校为了弘扬中华传统文化,了解学生整体阅读能力,组织全校的1000名学生进行一次阅读理解大赛.从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制了频数分布表和频数分布直方图:
分组/分 | 频数 | 频率 |
50≤x<60 | 6 | 0.12 |
60≤x<70 | 0.28 | |
70≤x<80 | 16 | 0.32 |
80≤x<90 | 10 | 0.20 |
90≤x≤100 | 4 | 0.08 |
(1)频数分布表中的 ;
(2)将上面的频数分布直方图补充完整;
(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,估计该校进入决赛的学生大约有 人.