题目内容

【题目】某校为了弘扬中华传统文化,了解学生整体阅读能力,组织全校的1000名学生进行一次阅读理解大赛.从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制了频数分布表和频数分布直方图:

分组/分

频数

频率

50x60

6

0.12

60x70

0.28

70x80

16

0.32

80x90

10

0.20

90x100

4

0.08

1)频数分布表中的

2)将上面的频数分布直方图补充完整;

3)如果成绩达到9090分以上者为优秀,可推荐参加决赛,估计该校进入决赛的学生大约有 人.

【答案】114;(2)补图见解析;(380.

【解析】

1)根据第1组频数及其频率求得总人数,总人数乘以第2组频率可得a的值;

2)把上面的频数分布直方图补充完整;

3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.

1)∵被调查的总人数为6÷0.12=50人,

a=50×0.28=14

故答案为:14

2)补全频数分布直方图如下:

3)估计该校进入决赛的学生大约有1000×0.08=80人,

故答案为:80

练习册系列答案
相关题目

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网