题目内容
【题目】如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有( )
①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AEEG;④若AB=4,AD=5,则CE=1.
A. ①②③④ B. ①②③ C. ①③④ D. ①②
【答案】B
【解析】(1)由折叠的性质可得:∠ADG=∠AFG(故①正确);
(2)由折叠的性质可知:∠DGE=∠FGE,∠DEG=∠FEG,DE=FE,
∵FG∥CD,
∴∠FGE=∠DEG,
∴∠DGE=∠FEG,
∴DG∥FE,
∴四边形DEFG是平行四边形,
又∵DE=FE,
∴四边形DEFG是菱形(故②正确);
(3)如图所示,连接DF交AE于O,
∵四边形DEFG为菱形,
∴GE⊥DF,OG=OE=GE,
∵∠DOE=∠ADE=90°,∠OED=∠DEA,
∴△DOE∽△ADE,
∴,即DE2=EOAE,
∵EO=GE,DE=DG,
∴DG2=AEEG,故③正确;
(4)由折叠的性质可知,AF=AD=5,DE=FE,
∵AB=4,∠B=90°,
∴BF=,
∴FC=BC-BF=2,
设CE=x,则FE=DE=4-x,
在Rt△CEF中,由勾股定理可得: ,解得:
.
故④错误;
综上所述,正确的结论是①②③.
故选B.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数(人数) |
第1组 | 25≤x<30 | 6 |
第2组 | 30≤x<35 | 8 |
第3组 | 35≤x<40 | 16 |
第4组 | 40≤x<45 | a |
第5组 | 45≤x<50 | 10 |
请结合图表完成下列各题:
(1)求表中a的值;(2)请把频数分布直方图补充完整;
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.