题目内容
【题目】(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.
(2)简单应用:在(1)中,如果AB=4,AD=6,求DG的长;
(3)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.
【答案】(1)GF=GC,证明见解析;(2);(3)(1)中的结论仍然成立,理由见解析.
【解析】
(1)连接GE,根据点E是BC的中点以及翻折的性质可以求出BE=EF=EC,然后利用“HL”证明△GFE和△GCE全等,根据全等三角形对应边相等即可得证;
(2)设GC=x,则AG=4+x,DG=4﹣x,利用Rt△ADG中的勾股定理即可求得GC,进而解题.
(3)利用平行四边形的性质,首先得出∠C=180°-∠D,∠EFG=180°-∠AFE=180°-∠B=180°-∠D,进而得出∠ECG=∠EFG,再利用EF=EC,得出∠EFC=∠ECF,即可得出答案.
解:(1)GF=GC.
理由如下:如图1,连接GE,
∵E是BC的中点,
∴BE=EC,
∵△ABE沿AE折叠后得到△AFE,
∴BE=EF,
∴EF=EC,
∵在矩形ABCD中,
∴∠C=∠B=90°,
∴∠EFG=90°,
∵在Rt△GFE和Rt△GCE中,
,
∴Rt△GFE≌Rt△GCE(HL),
∴GF=GC;
(2)设GC=x,则AG=4+x,DG=4﹣x,
在Rt△ADG中,62+(4﹣x)2=(4+x)2,
解得x=.
∴GC=,DG=4﹣=;
(3)(1)中的结论仍然成立.
证明:如图2,连接FC,
∵E是BC的中点,
∴BE=CE,
∵将△ABE沿AE折叠后得到△AFE,
∴BE=EF,∠B=∠AFE,
∴EF=EC,
∴∠EFC=∠ECF,
∵矩形ABCD为平行四边形,
∴∠B=∠D,
∵∠ECD=180°﹣∠D,∠EFG=180°﹣∠AFE=180°﹣∠B=180°﹣∠D,
∴∠ECD=∠EFG,
∴∠GFC=∠GFE﹣∠EFC=∠ECG﹣∠ECF=∠GCF,
∴∠GFC=∠GCF,
∴FG=CG;
即(1)中的结论仍然成立.