题目内容

如图,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点D.连接OE、AC,已知∠POE=2∠CAB,∠P=∠E.
(1)求证:CE⊥AB;
(2)求证:PC是⊙O的切线;
(3)若BD=20D,PB=9,求⊙O的半径及tan∠P的值.
(1)证明:连接OC,
∴∠COB=2∠CAB,
又∠POE=2∠CAB.
∴∠COD=∠EOD,
又∵OC=OE,
∴∠ODC=∠ODE=90°,
即CE⊥AB;

(2)证明:∵CE⊥AB,∠P=∠E,
∴∠P+∠PCD=∠E+∠PCD=90°,
又∠OCD=∠E,
∴∠OCD+∠PCD=∠PCO=90°,
∴PC是⊙O的切线;

(3)设⊙O的半径为r,OD=x,则BD=2x,r=3x,
∵CD⊥OP,OC⊥PC,
∴Rt△OCDRt△OPC,
∴OC2=OD•OP,即(3x)2=x•(3x+9),
解之得x=
3
2

∴⊙O的半径r=
9
2

同理可得PC2=PD•PO=(PB+BD)•(PB+OB)=162,
∴PC=9
2

在Rt△OCP中,tan∠P=
OC
PC
=
2
4

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网