题目内容
【题目】图形变换中的数学,问题情境:在课堂上,兴趣学习小组对一道数学问题进行了深入探究,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,连接CD.探索发现:
(1)如图①,BC与BD的数量关系是 ;
(2)如图①,CD与AB的数量关系是 ;并说明理由.
猜想验证:
(3)如图②,若P是线段CB上一动点(点P不与点B,C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想BF,BP,BD三者之间的数量关系,并证明你的结论;
拓展延伸:
(4)若点P是线段CB延长线上一动点,按照(3)中的作法,请在图③中补全图象,并直接写出BF、BP、BD三者之间的数量关系.
【答案】(1)BC=BD;(2)CD=AB;(3)BF+BP=BD,证明见解析;(4)补图见解析,BF=BD+BP.
【解析】
(1)根据30°直角三角形的性质和中点的定义,即可得到答案;
(2)根据30°直角三角形的性质和中点的定义,证明△DBC是等边三角形,即可得到答案;
(3)同(2)的方法得出BC=BD进而得出△BCD是等边三角形,进而判断出△DCP≌△DBF,得出CP=BF即可得出结论;
(4)同(3)的方法得出BC=BD进而得出△BCD是等边三角形,进而判断出△DCP≌△DBF,得出CP=BF即可得出结论;
解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=30°,
∴,
∵点D时AB的中点,
∴,
∴BC=BD;
故答案为:BC=BD;
(2)CD=AB;
理由:∵∠ACB=90°,∠A=30°,
∴∠CBA=60°,BC=AB,
∵点D是AB的中点,
∴BC=BD,
∴△DBC是等边三角形,
∴CD=BC,
∴BC=AB,
∴CD=AB;
故答案为:CD=AB;
(3)BF+BP=BD,
理由:由(2)知 △DBC是等边三角形,
∴∠CDB=60°,DC=DB,
∵线段DP绕点D逆时针旋转60°,得到线段DF,
∴∠PDF=60°,DP=DF,
∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,
∴∠CDP=∠BDF,
∴△DCP≌△DBF,
∴CP=BF,
∵CP+BP=BC,
∴BF+BP=BC,
∵BC=BD,
∴BF+BP=BD;
(4)如图③,BF=BD+BP,
理由:∵∠ACB=90°,∠A=30°,
∴∠CBA=60°,BC=AB,
∵点D是AB的中点,
∴BC=BD,
∴△DBC是等边三角形,
∴∠CDB=60°,DC=DB,
∵线段DP绕点D逆时针旋转60°,得到线段DF,
∴∠PDF=60°,DP=DF,
∴∠CDB+∠PDB=∠PDF+∠PDB,
∴∠CDP=∠BDF,
在△DCP和△DBF中,
,
∴△DCP≌△DBF,
∴CP=BF,
∵CP=BC+BP,
∴BF=BC+BP,
∵BC=BD,
∴BF=BD+BP.
【题目】九年级甲、乙两名同学期末考试的成绩(单位:分)如下:
语文 | 数学 | 英语 | 历史 | 理化 | 体育 | |
甲 | 75 | 93 | 85 | 84 | 95 | 90 |
乙 | 85 | 85 | 91 | 85 | 89 | 85 |
根据表格中的数据,回答下列问题:
(1)甲的总分为522分,则甲的平均成绩是__________分,乙的总分为520分,________的成绩好一些. (填“甲”或者“乙”)
(2)经过计算知. 你认为__________不偏科;(填“甲”或者“乙”)
(3)中招录取时,历史和体育科目的权重是0.3,其它科成绩权重是1,请问谁的成绩更好一些?请说明理由.