题目内容
【题目】解答题
(1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.
(2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.
(3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.
【答案】
(1)
解:如图1,作C关于直线AB的对称点C′,
连接C′D交AB于点P.
则点P就是所要求作的点.
理由:在l上取不同于P的点P′,连接CP′、DP′.
∵C和C′关于直线l对称,
∴PC=PC′,P′C=P′C′,
而C′P+DP<C′P′+DP′,
∴PC+DP<CP′+DP′
∴CD+CP+DP<CD+CP′+DP′
即△CDP周长小于△CDP′周长
(2)
解:如图2,作P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F,
则点E,F就是所要求作的点.
理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,
∵C和P关于直线OA对称,
∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,
∵PE+EF+PF=CE+EF+DF,PE′+PF′+E′F′=CE′+E′F′+DE′,
∴CE+EF+DF<CE′+E′F′+DF′,′
∴PE+EF+PF<PE′+PF′+E′F′
(3)
解:如图3,作M关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F,
则点E,F就是所要求作的点.
理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,
∵C和P关于直线OA对称,
∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,
由(2)得知MN+ME+EF+MF<ME′+E′F′+F′D.
【解析】(1)由于△PCD的周长=PC+CD+PD,而CD是定值,故只需在直线l上找一点P,使PC+PD最小.如果设C关于l的对称点为C′,使PC+PD最小就是使PC′+PD最小;(2)作P关于OA、OB的对称点C、D,连接CD角OA、OB于E、F.此时△PEF周长有最小值;(3)如图3,作M关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F,此时使得E、F、M、N,四点组成的四边形的周长最短.
【考点精析】认真审题,首先需要了解轴对称的性质(关于某条直线对称的两个图形是全等形;如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线;两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上),还要掌握轴对称-最短路线问题(已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径)的相关知识才是答题的关键.