题目内容
【题目】如图,四边形ABCD为菱形,∠D=60°,AB=4,E为边BC上的动点,连接AE,作AE的垂直平分线GF交直线CD于F点,垂足为点G,则线段GF的最小值为____________.
【答案】3
【解析】
作辅助线,构建三角形全等,证明Rt△AFM≌Rt△EFN(HL),得∠AFM=∠EFN,再证明△AEF是等边三角形,计算FG=AG=AE,确认当AE⊥BC时,即AE=2时,FG最小.
解:连接AC,过点F作FM⊥AC于,作FN⊥BC于N,连接AF、EF,
∵四边形ABCD是菱形,且∠D=60°,
∴∠B=∠D=60°,AD∥BC,
∴∠FCN=∠D=60°=∠FCM,
∴FM=FN,
∵FG垂直平分AE,
∴AF=EF,
∴Rt△AFM≌Rt△EFN(HL),
∴∠AFM=∠EFN,
∴∠AFE=∠MFN,
∵∠FMC=∠FNC=90°,∠MCN=120°,
∴∠MFN=60°,
∴∠AFE=60°,
∴△AEF是等边三角形,
∴FG=AG=AE,
∴当AE⊥BC时,Rt△ABE中,∠B=60°,
∴∠BAE=30°,
∵AB=4,
∴BE=2,AE=2,
∴当AE⊥BC时,即AE=2时,FG最小,最小为3;
故答案为:3.
【题目】某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)销售量】
(1)请根据他们的对话填写下表:
销售单价x(元/kg) | 10 | 11 | 13 |
销售量y(kg) |
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?