题目内容
【题目】已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.
(1)求证:△ABE≌△BCF;
(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;
(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.
【答案】(1)证明见解析;
(2);
(3)没有变化,理由见解析.
【解析】试题分析:(1)由四边形ABCD是正方形,可得∠ABE=∠BCF=90°,AB=BC,又由AE⊥BF,由同角的余角相等,即可证得∠BAE=∠CBF,然后利用ASA,即可判定:△ABE≌△BCF;
(2)由正方形ABCD的面积等于3,即可求得此正方形的边长,由在△BGE与△ABE中,∠GBE=∠BAE,∠EGB=∠EBA=90°,可证得△BGE∽△ABE,由相似三角形的面积比等于相似比的平方,即可求得答案;
(3)首先由正切函数,求得∠BAE=30°,易证得Rt△ABE≌Rt△AB′E′≌Rt△ADE′,可得DE’=B’E’=BE,由(1)可知BE=CF,从而得CF=DE’,继而可得DF=CE’;
试题解析:(1)正方形ABCD中,AB=BC,∠ABC=∠BCF=90°,∴∠ABF+∠CBF=90°, ∵AE⊥BF, ∴∠ABF+∠BAE=90°,∴∠CBF=∠BAE ,∴△ABE ≌△BCF ;
(2)∵正方形面积为3,∴AB=,∵∠GBE=∠BAE,∠EGB=∠EBA=90°,∴△BGE∽△ABE,∴,又∵BE=1,∴AE2=AB2+BE2=3+1=4,∴S△BGE==;
(3) ∵BE=1,AB=,∴tan∠BAE=,∴∠BAE=30°,由已知易证得Rt△ABE≌Rt△AB′E′≌Rt△ADE′,∴DE’=B’E’=BE,∵△ABE≌△BCF,∴BE=CF,∴CF=DE’,∴DF=CE′;