题目内容

【题目】如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.
(1)求证:∠A=∠BDC;
(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.

【答案】
(1)

证明:如图,连接OD,

∵AB为⊙O的直径,

∴∠ADB=90°,即∠A+∠ABD=90°,

又∵CD与⊙O相切于点D,

∴∠CDB+∠ODB=90°,

∵OD=OB,

∴∠ABD=∠ODB,

∴∠A=∠BDC.


(2)

解:∵CM平分∠ACD,

∴∠DCM=∠ACM,

又∵∠A=∠BDC,

∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,

∵∠ADB=90°,DM=1,

∴DN=DM=1,

∴MN= =


【解析】(1)由圆周角推论可得∠A+∠ABD=90°,由切线性质可得∠CDB+∠ODB=90°,而∠ABD=∠ODB,可得答案;
    (2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN的长.本题主要考查切线的性质、圆周角定理、角平分线的性质及勾股定理,熟练掌握切线的性质:圆的切线垂直于过切点的半径是解本题的关键.
【考点精析】根据题目的已知条件,利用切线的性质定理的相关知识可以得到问题的答案,需要掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网