题目内容
【题目】一副含 和 角的三角板 和 叠合在一起,边 与 重合, (如图1),点 为边 的中点,边 与 相交于点 ,此时线段 的长是 . 现将三角板 绕点 按顺时针方向旋转(如图2),在 从 到 的变化过程中,点 相应移动的路径长共为 . (结果保留根号)
【答案】12( -1)cm;(12 -18)cm
【解析】解:如图1,过H作HI⊥AC于I,
∵BC=EF=12cm,
∴AC=BC·tan∠ABC=×12=4cm,
∵∠BCD=45°,所以∠ACD=45°,
设HI=x,则IC=x,AI=x,
∵AC=AI+IC,
∴4=x+x,
解得x=6(-1),
则AH=HI=12(1-),
∵AB=2AC=8
∴BH==12()cm,
所以答案是12()cm
如图2和图3,在 ∠ C G F 从 0 ° 到 60 ° 的变化过程中,点H先向AB方向移,在往BA方向移,直到H与F重合(下面证明此时∠CGF=60度),此时BH的值最大,
如图3,当F与H重合时,连接CF,因为BG=CG=GF,
所以∠BFC=90度,
∵∠B=30度,
∴∠BFC=60度,
由CG=GF可得∠CGF=60度.
∵BC=12cm,所以BF=BC=6;
如图2,当GH⊥DF时,GH有最小值,则BH有最小值,且GF//AB,连接DG,交AB于点K,则DG⊥AB,
∵DG=FG,
∴∠DGH=45度,
则KG=KH=GH=(×6)=3,
BK=KG=3 ,
则BH=BK+KH=3+3,
则点H运动的总路程为(cm)
所以答案是()cm
【考点精析】认真审题,首先需要了解旋转的性质(①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了).