题目内容
【题目】数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒······一只到第格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求是多少?请同学们阅读以下解答过程就知道答案了.
设,
则
即:
事实上,按照这位大臣的要求,放满一个棋盘上的个格子需要粒米.那么到底多大呢?借助计算机中的计算器进行计算,可知答案是一个位数: ,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:
我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,则塔的顶层共有多少盏灯?
计算:
某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:
已知一列数:,其中第一项是,接下来的两项是,再接下来的三项是,以此类推,求满足如下条件的所有正整数,且这一数列前项和为的正整数幂.请直接写出所有满足条件的软件激活码正整数的值.
【答案】(1)3;(2);(3)
【解析】
设塔的顶层共有盏灯,根据题意列出方程,进行解答即可.
参照题目中的解题方法进行计算即可.
由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,分别分别即可求得N的值
设塔的顶层共有盏灯,由题意得
.
解得,
顶层共有盏灯.
设,
,
即:
.
即
由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n1第n项,
根据等比数列前n项和公式,求得每项和分别为:
每项含有的项数为:1,2,3,…,n,
总共的项数为
所有项数的和为
由题意可知:为2的整数幂,只需将2n消去即可,
则①1+2+(2n)=0,解得:n=1,总共有,不满足N>10,
②1+2+4+(2n)=0,解得:n=5,总共有 满足,
③1+2+4+8+(2n)=0,解得:n=13,总共有 满足,
④1+2+4+8+16+(2n)=0,解得:n=29,总共有 不满足,
∴