题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC相交于点M、N.
(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;
(2)连接MD,求证:MD=NB.
【答案】(1)证明见解析;(2)证明见解析.
【解析】(1)如图,连接ON,根据直角三角形斜边中线等于斜边的一半可得AD=CD=DB,从而可得∠DCB=∠DBC,再由∠DCB=∠ONC,可推导得出ON∥AB,再结合NE是⊙O的切线,ON//AB,继而可得到结论;
(2)如图,由(1)可知ON∥AB,继而可得N为BC中点,根据圆周角定理可知∠CMD=90°,继而可得MD∥CB,再由D是AB的中点,根据得到MD=NB.
(1)如图,连接ON,
∵CD是Rt△ABC斜边AB上的中线,
∴AD=CD=DB,
∴∠DCB=∠DBC,
又∵OC=ON,∴∠DCB=∠ONC,
∴∠ONC=∠DBC,
∴ON∥AB,
∵NE是⊙O的切线,ON是⊙O的半径,
∴∠ONE=90°,
∴∠NEB=90°,即NE⊥AB;
(2)如图所示,由(1)可知ON∥AB,
∵OC=OD,∴
∴CN=NB=CB,
又∵CD是⊙O的直径,∴∠CMD=90°,
∵∠ACB=90°,
∴∠CMD+∠ACB=180°,∴MD//BC,
又∵D是AB的中点,∴MD=CB,
∴MD=NB.
练习册系列答案
相关题目